
1764 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008

Smart Sender: A Practical Rate Adaptation
Algorithm for Multirate IEEE 802.11 WLANs

Qiuyan Xia, Student Member, IEEE, and Mounir Hamdi, Senior Member, IEEE

Abstract— Wireless Local Area Networks (WLANs) have be-
come increasingly popular due to the recent availability of
affordable devices providing multirate capabilities. Under time-
varying wireless channels, a device needs to tune its transmission
rate dynamically for more efficient utilization of the physical
link. Hence, rate adaptation mechanism, which is intentionally
unspecified by the IEEE 802.11 standards, is critical to the system
performance. In this paper, we propose a practical rate adapta-
tion algorithm, Smart Sender, which utilizes both statistics and
the received signal strength indicator (RSSI) of ACK packets to
determine the transmission rate that maximizes the throughput.
We implement our algorithm in commercial WLAN products
and carry out extensive experiments for performance evaluation.
The results demonstrate that using both statistics and RSSI of
ACKs greatly improves system throughput and responsiveness
under various wireless environments.

Index Terms— rate adaptation, IEEE 802.11, WLAN, multi-
rate, RSSI.

I. INTRODUCTION

IN RECENT years, Wireless Local Area Network (WLAN)
technology has been evolving at a rapid pace. Most of the

commercial WLAN products are based on the IEEE 802.11
standard [1], which specifies the Medium Access Control
(MAC) and Physical (PHY) layers for WLAN systems. Two
medium access mechanisms are defined in 802.11: the Distrib-
uted Coordination Function (DCF) is a mandatory, contention-
based access protocol; the Point Coordination Function (PCF)
is a priority-based, contention-free protocol. In the basic
access mode of the DCF, only DATA-ACK is exchanged
between the sender and the receiver. The DCF also defines an
optional access mode to avoid collisions from hidden nodes,
which requires the sender and receiver to exchange short RTS
(Request To Send) and CTS (Clear To Send) control frames
before the actual data transmission.

There are currently three PHY layer extensions, 802.11a/b/g
[2]–[4], all providing multiple data rates at the physical
layer by using different modulation and coding schemes. For
example, 802.11b supports four data rates of 1, 2, 5.5 and
11 Mbps at 2.4 GHz band; 802.11a defines eight data rates
ranging from 6 Mbps up to 54 Mbps at 5 GHz band; 802.11g,
operating at 2.4 GHz band, is backwards-compatible with
802.11b and offers twelve rates up to the maximum 54 Mbps.

Manuscript received December 10, 2006; revised May 14, 2007; accepted
June 12, 2007. The associate editor coordinating the review of this paper and
approving it for publication was S. Aissa. This work was supported by a grant
from Research Grants Council (RGC) under contract HKUST6260/04E.

Q. Xia and M. Hamdi are with the Department of Computer Science and
Engineering, the Hong Kong University of Science and Technology, Clear Wa-
ter Bay, Kowloon, Hong Kong, China (e-mail: {xiaqy, hamdi}@cse.ust.hk).

Digital Object Identifier 10.1109/TWC.2008.061047.

Typically, higher data rates are achieved by more efficient
modulation schemes. A high level modulation can be used
when the channel Signal-to-Noise Ratio (SNR) is sufficiently
high such that the received signal can be properly decoded.
Therefore, a tradeoff emerges between the data rate and the
Bit Error Rate (BER) under a given SNR.

With the multirate capability, it is desirable to always
transmit data at the highest possible rate given current channel
conditions. However, in wireless systems, the radio propaga-
tion environments vary over time and space due to factors
such as signal attenuation and fading, motion of objects,
interference, causing variations in the received SNR. As a
result, there is no single rate that can be optimal under
all scenarios. As the multirate enhancements are within the
PHY layer protocols, it is the MAC layer mechanisms that
are required to exploit this capability. Intuitively, when the
channel quality is poor, lower transmission rate is preferred
to maintain a smaller BER; otherwise, the transmission rate
should be higher to improve the throughput. The problem of
dynamically selecting an appropriate transmission rate out of
multiple available data rates is referred to as Rate Adaptation.
Its objective is to maximize system throughput by tuning the
user-available MAC layer parameter, i.e., data rate, to current
channel conditions.

The implementation of a rate adaptation algorithm is inten-
tionally left open to the vendors. The 802.11 standards only
specify which rate set is allowed to use for certain types of
data frames, but not when and how to switch among different
rates. In addition, no signaling mechanism is available for the
receiver to notify the sender about the channel conditions.
Typically, in 802.11 WLANs, the data rate to be used for
a particular transmission is solely determined by the sender.
The actual transmission rate is encoded in the PLCP (Physical
Layer Convergence Procedure) header, which is transmitted at
a fixed rate (basic rate) supported by all stations in the WLAN
system. After receiving the header, the receiver can switch to
the rate indicated in the PLCP header to receive the remaining
frame. As presented above, the higher the transmission rate is,
the larger SNR is required at the receiver to maintain the same
communication quality. To determine the best transmission
rate at a given time, the sender needs to know the Channel
State Information (CSI) in advance, i.e., SNR at the receiver
side. Since SNR is time-varying, its accurate value is not
available to the sender in reality. The sender has to determine
the transmission rate based on limited, indirect CSI feedback
such as ACK, FER and retry count.

In this paper, we focus on rate adaptation for 802.11a
WLANs based on the DCF, as the PCF is rarely used in

1536-1276/08$25.00 c© 2008 IEEE

XIA and HAMDI: SMART SENDER: A PRACTICAL RATE ADAPTATION ALGORITHM FOR MULTIRATE IEEE 802.11 WLANS 1765

commercial WLAN devices. Nevertheless, our algorithm can
be easily extended to other physical layers such as the 802.11g
PHY. Our objective is to design a rate adaptation algorithm
which works well in a variety of channel conditions; besides,
no protocol modification is required so that it can be easily
deployed with current products. Specifically, we investigate a
new MAC layer mechanism, Smart Sender, which performs
the following tasks efficiently:

• It dynamically monitors and adapts to changes (transient
or sustained) in the link quality by tuning the transmission
bit rate.

• It maintains both long-term and short-term statistics,
which are carefully selected to better reflect the network
configurations and channel conditions.

• It maximizes channel capacity by opportunistically trans-
mitting at the highest feasible rate analogous with “water-
filling” concept in the information theory.

• To improve system responsiveness, it uses the Received
Signal Strength Indicator (RSSI) of ACKs to predict the
dynamics of the receiver-perceived link conditions for
rate adaptation at the sender.

We demonstrate that the combination of these methods can
significantly improve system performance.

The rest of the paper is organized as follows. In Section II,
we briefly review the related work. We describe the experiment
methodology in Section III. The proposed Smart Sender rate
adaptation algorithm is presented in Section IV. In Section
V, we introduce practical implementation of our algorithm
on commercial wireless adapters. Section VI gives extensive
performance evaluations of our algorithm compared with other
state-of-the-art algorithms. Finally, this paper concludes with
Section VII.

II. RELATED WORK

In this section, we briefly review rate adaptation algo-
rithms grouped into two categories, statistic based and signal
measurement based, according to the type of CSI employed.
Description of practical algorithms are followed as they will
be compared with our scheme for performance evaluation.

A. Categories of Rate Adaptation Algorithms

Based on the type of CSI used for channel quality estima-
tion, rate adaptation algorithms can be roughly divided into
two categories: statistic based schemes (ARF [5], Dynamic
ST [6], ONOE [7], AARF/AMRR [8], SampleRate [9]) and
signal measurement based schemes (RBAR [10], Goodput
analysis [11], OAR [12], RSS measurement [13]). There are
still others designed with specific considerations, such as
[14]–[16]. Performance evaluations on these rate adaptation
algorithms are available in [17] [18].

1) Statistic based schemes: For statistic based schemes,
channel quality estimation and rate selection are performed
by the sender. Usually, statistics such as ACK, retry count,
and FER are maintained as feedback at the sender. The rate
is either adapted when the values of the indicators exceed
their thresholds (ARF, ONOE, AARF/AMRR), or statistically
selected out as the best one to use (SampleRate). Such tech-
niques are widely used in current 802.11 products. However,

it is hard to decide proper thresholds or statistic models,
hence they are not very adaptive to time-varying channel
conditions; also, adaption is relatively slow due to the use of
indirect, long-term statistics for channel estimation. The Auto
Rate Fallback (ARF) algorithm [5] uses a success threshold
ST = 10 and a failure threshold FT = 2 to decide the
rate increment/decrement behavior. However, it cannot react
quickly to fast channel variations. Also, it may over-react
when the channel quality is stable over a relatively long period.
A dynamic rate adaptation algorithm proposed in [6] further
develops ARF by using one failure threshold FT = 1 and
two success thresholds ST1 and ST2 to distinguish between
slow and fast changing channel conditions. In [8], AARF
is proposed to alleviate the regular failure problem of ARF,
by increasing the period between successive failed attempts
mostly experienced in stable channel conditions. It adapts ST
using a Binary Exponential Backoff (BEB) procedure to better
reflect the channel conditions.

2) Signal measurement based schemes: Signal measure-
ment based schemes use direct link quality metric (e.g., SNR,
RSSI etc.) for optimal rate selection. The measured signal
strength is used to look up the best data rate based on
predefined mappings. These schemes have the advantage that
the channel quality (indicated by the SNR, which is firmly
related to the BER of the link) is obtained immediately,
without a need to wait a long time before the feedback
statistics are collected, and that no data is sent at rates higher
than the current (optimal) rate. Despite these advantages, they
have not been applied in practice so far, due to the difficulties
to obtain reliable SNR estimates of the radio channel, and the
fact that the SNR needed at the sender is the one observed at
the receiver. In RBAR [10], the receiver estimates the channel
condition using a sample of instantaneously received signal
strength at the end of the RTS reception, and then piggybacks
the selected transmission rate to the sender in CTS. OAR [12]
improves RBAR by exploiting the time-varying nature of the
channel and opportunistically sending multiple packets at high
rate when the channel is favorable. MAD [19] further extends
OAR exploiting the multiuser diversity. In [11], a link adaptor
computes offline a best PHY mode table and at runtime, it
monitors the SNR variations in the channel and performs a
table lookup. In [13], signal strength of received frames and
number of retransmissions are utilized to estimate the channel
condition. Based on the statistics, a table is continuously
adapted that maps RSS into throughput for different data rates.

B. Introduction to the AR5212 Chipset and MADWiFi driver

We carried out experiments with wireless adapters based
on Atheros AR5212 chipset [20]. It maintains several FIFO
(First In First Out) queues of transmission descriptors to
schedule packets for transmission. Each descriptor contains
detailed control information for a frame’s transmission and
a status field that records how the transmission is completed
[8]. Among them, the most relevant information is an ordered
set of 4 pairs of rate and transmission count fields, referred
to as “multirate retry series”, and the transmission status field
including the sub-fields such as “ok”, “excessive retries”, “fail
count”, “final transmit index”, “ACK signal strength”. There

1766 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008

are four retry series (r0/c0, ..., r3/c3), each with a rate ri and
a limit ci, which means that transmission attempts at rate ri

is at most ci times (i = 0, 1, 2, 3). Typically, the AR5212
chipset supports default on-board multirate retry. However,
the users can either disable this function, or customize the
retry rate and retry number for each series. Whenever data is
received from the upper layer, the driver prepares a descriptor
for it, by filling in the fields with proper initial values, and
inserts the descriptor into one of the FIFO queues. As soon
as the wireless medium is available, the head-of-line frame is
transmitted at the rate r0. Other retry series are automatically
carried out if necessary, as specified by the multirate retry
series. Finally, the transmission status is returned to the
descriptor for the reference of users of the driver.

A complete Linux driver for AR5210/5211/5212 chipsets
is available from the Multiband Atheros Driver for WiFi
(MADWiFi) [7]. Three rate adaptation algorithms, namely
ONOE, AMRR [8] and SampleRate [9], are available in
MADWiFi. We briefly review ONOE and SampleRate (more
popular) below; useful descriptions can also be found in [17].

• ONOE: ONOE is an ARF-like rate adaptation algorithm.
It runs periodically analyzing transmit statistics for each
destination. The current rate for the destination is associ-
ated with a counter of credits. If transmissions at the
current rate are judged to be good in that interval, a
“tx upper credit” is issued; otherwise, the credit counter
is deducted. If the total credits at the current rate exceeds
the rate raise threshold, the transmission rate is raised.
If no packets have succeeded, or every packet needs retry
in average, the transmission rate is decreased to the next
lower one. We note that though ONOE is much less
sensitive to an individual packet failure than ARF, it is
also more conservative. When a better channel occurs,
it takes at least 10 seconds to scale up. Similarly, if the
channel is deteriorating, it can only step down to the next
lower rate for each interval and eventually, there are too
many packet losses before it finds a proper rate.

• SampleRate: SampleRate sends most data packets at the
bit rate that would provide the highest throughput, no
matter how lossy the link may be. Different from ONOE,
it selects the bit rate on a per-frame basis. SampleRate
periodically sends packets at rates other than the current
one to estimate whether another rate will offer better
throughput. For each destination, it keeps a record of the
number of successive failures, the number of successful
transmits and the total transmission time for a bit rate.
Then it chooses the rate which may provide the most
throughput based on estimates of the expected per-frame
transmission time at each rate. SampleRate can generally
achieve a higher throughput in low-quality links.

III. EXPERIMENT METHODOLOGY

A. Experiment Settings

We consider the network topology shown in Fig. 1. It
consists of three laptops (N1, N2, N3), all equipped with
3com 11a/b/g wireless PC cards (3CRPAG175 with XJACK
Antenna). These cards are based on the AR5212 chipset.
All laptops are running Linux (Fedora core 3 with kernel

Fig. 1. Network topology in the experiments: N0-N3 form an infrastructure
wireless LAN, which is connected to a wired LAN via a 100 Mbps Ethernet
switch. A server PC N4 is located at the wired LAN.

2.6.1.667) with the MADWiFi driver including the above
three algorithms as well as the Smart Sender algorithm. We
configure the wireless cards to work under 802.11a. They
are associated with the AP (Access Point) N0, which is a
3com wireless 11a/b/g access point (3CRWE454A72). The
AP is connected to a 100 Mbps Ethernet switch, which
extends the wireless LAN to a wired LAN, where a Dell PC
(N4) is located. All equipment are placed in a typical office
environment with lots of concrete walls and moving objects.

B. Experiment Methodology

We use “Netperf” [21] to generate continuous saturated
UDP/TCP traffic and report the achieved application level
throughput. Before our experiments, an additional wired
throughput check is performed. We connect the server PC
and the laptop being used for testing with a crossover Eth-
ernet cable. The 100 Mbps Ethernet connection reports TCP
throughput about 89 Mbps. This verifies that the wireless
link is not affected by host hardware issues. Furthermore,
the server PC resides on an independent subnet from the
campus network, which ensures that the “server PC-to-AP”
connection is not affected by traffic outside of the test setup.
The paths between the AP and the laptops may not be LOS
(Line-Of-Sight). In the experiments, we first place the laptops
at different locations in static scenarios. To get large SNR
variations in mobility scenarios, we also move the laptop at
the speeds of 1 to 2 m/s. Specifically, we classify a wireless
link into four types in terms of signal strength and varying
speed listed in Table I. Fig. 2 shows the RSSI profiles of
these links sampled in a 250 seconds interval.

We run experiments in different settings with static/mobile
clients, in good/bad channel qualities, with/without contending
stations. To minimize the uncertainty and make the compar-
isons meaningful, we use Channel 60 of 802.11a for no-
contention scenarios, since it is orthogonal to other busy
channels used by our department. We measure the stability (by
average throughput), responsiveness (by response time), and
contention performance of the rate adaptation algorithms in
realistic scenarios. Stability means a rate adaptation algorithm
can achieve desired performance references and is robust to
disturbances. Note that an unstable algorithm may cause the
bit rate diverge from the desired value and hardly recover to

XIA and HAMDI: SMART SENDER: A PRACTICAL RATE ADAPTATION ALGORITHM FOR MULTIRATE IEEE 802.11 WLANS 1767

TABLE I

LINK TYPES IN THE EXPERIMENTS

Link LT 1: LT 2: LT 3: LT 4:

Types High-Stable Link Low-Stable Link High-Varying Link Low-Varying Link

Received signal strength RSSI > RSSIhigh1 < RSSIlow1 > RSSIhigh2 < RSSIlow2

Varying speed in RSSI slight slight large large

0 50 100 150 200 250
15
20
25
30
35
40
45
50

(a) LT 1: High−Stable Link

time (s)

R
S

S
I (

dB
)

0 50 100 150 200 250
15
20
25
30
35
40
45
50

(b) LT 2: Low−Stable Link

time (s)

R
S

S
I (

dB
)

0 50 100 150 200 250
15
20
25
30
35
40
45
50

(c) LT 3: High−Varying Link

time (s)

R
S

S
I (

dB
)

0 50 100 150 200 250
15
20
25
30
35
40
45
50

(d) LT 4: Low−Varying Link

time (s)

R
S

S
I (

dB
)

Fig. 2. RSSI profiles of four different link types.

a regular state. Responsiveness measures how fast it takes for
the algorithm output to achieve the new desired value (i.e.,
bit rate), in reacting to environment changes. Both metrics
measure the efficiency of the rate adaptation mechanisms.

IV. Smart Sender RATE ADAPTATION ALGORITHM

In this section, we focus on designing practical sender-
based algorithms with an “ignorant” receiver, that can still
be self-tuning and fast responsive. Our scheme is based on
the following observations:

• The static nature of some previously proposed algorithms
with static thresholds makes them less versatile to differ-
ent channel conditions;

• Signal strength measurements should not be directly used
for rate selection; however, they can be helpful in statistic
based algorithms if properly used [22].

• Rate adaptation algorithms must be robust against con-
gestion losses, although it may not be able to differentiate
between congestion loss and wireless loss (which is
extremely difficult without special effort).

Specifically, we propose the Smart Sender algorithm, which
predicts channel dynamics based on collected feedback. The
key component is to decide when to change the rate, and which
rate to switch to. To achieve our goals, both statistics and
SNR-related information are incorporated in rate adaptation.
The former are continuously collected and updated; based on
them, an optimization metric, i.e., the throughput, is calcu-
lated and acts as a primary rate-switch-decision trigger. The

later aids to safeguard the selected rate, and improve system
responsiveness, like in [14].

A. Statistic Adaptor

The statistic adaptor of Smart Sender is throughput-
centered. It monitors the transmission history and computes a
long-term transmission rate that provides the best throughput.
In order to select one out of several candidates, Smart Sender
probes at a new rate that may outperform the current rate,
provided that: the expected throughput at the new rate exceeds
the current rate; or transmissions at the current rate are
suboptimal, and scaling up/down can actually improve the
performance. As long as the statistic adaptor observes that
the probing rate does not perform so well as expected, it
stops probing immediately and resorts to the previous long-
term transmission rate, which is selected based on periodical
analysis of transmission history. During a transmission period,
the long-term transmission rate is not changed if it is optimal
in the sense that it provides the highest and most stable
throughput. However, one can hardly judge this since no exact
channel knowledge is known a priori. Here we adopt both
long-term and short-term statistics to decide whether and when
to probe at a new rate. It is based on the following obser-
vations: for system stability, long-term statistics (throughput,
retry count) can decide whether a probe is justified; for sys-
tem responsiveness, the consecutively received ACKs reflect
improving channel conditions and the lost ACKs may indicate

1768 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008

a deteriorating channel. By probing at a promising rate, the
sender can tune to the optimal rate as soon as possible.

1) Long-term statistics for system stability: Previous ARF-
like schemes only use heuristics with consecutive suc-
cesses/failures to decide an up/down scale, which may lead to
premature rate switch decisions. Here we propose to use long-
term throughput/retry statistics to justify the rate change. For
this end, expected transmission time (ETT) is utilized which
inherently takes account of the packet size, data rates and
retransmissions into account. Base on ETT, expected goodput
(EGP) can be calculated. A switch from the current rate
Rcur = Ri to the next higher/lower rate Rnew = Ri+1 or
Ri−1 is possible only when the relationship in (1) is satisfied:

EGP (Rcur) < Pi · EGP (Rnew), where (1)

EGP (Rcur) =
pktSize

ETT (Rcur)
, Rcur = Ri;

EGP (Rnew) =
pktSize

ETT (Rnew)
, Rnew = Ri±1. (2)

ETT (Ri) can be calculated using exponentially weighted
moving average (EWMA):

ETT t(Ri) = λ · ETT t−1(Ri) + (1 − λ) · ETTt(Ri). (3)

In (3), ETTt(Ri), the expected transmission time for tth
packet at rate Ri is calculated as the sum of transmission
time (ett(j, k)) at current or possibly following lower rates
for this packet, assuming a total number of m =

∑
m(Rj)

attempts are made to transmit the packet:

ETTt(Ri) = DIFS +
j≤i,k=m−1∑

j=i,k=k0(Ri)

ett(j, k), where (4)

ett(j, k) = BKavg(k) + PHYoverhead + TMACdata(j, k)
+ Tprop + SIFS + TACK + Tprop, where (5)

TMACdata(j, k) =
SMACdata

Rj,k
,

TACK =
SACK

Rbasic
,

BKavg(k) = min(2k−1CWminTslot, CWmax).(6)

In (4), ett(j, k) represents the time needed for one attempt
at kth attempt at the rate Rj,k. ETT (Rnew) is calculated
using previous transmission history before adopting the new
rate. If Rnew is never used, a default value applies assuming
a given mean packet size and no retransmissions. DIFS
and SIFS are DCF Inter Frame Space and Short Inter
Frame Space respectively. BKavg is the average backoff time
as a function of minimum contention window CWmin and
backoff stage k. PHY overhead is the physical layer overhead
(preamble, PLCP header, etc.). Tprop, TMACdata(j, k), TACK

is the propagation delay, transmission time of MAC payload
at the rate Rj,k, and transmission time of ACK respectively.
Since we incorporate the multirate retry mechanism, the retry
rate Rj,k(k > 0) may differ from the current long-term
transmission rate Ri,0 = Ri, dependent on the retry stage

k. The parameter 0 < Pi ≤ 1 is used to ensure that the
throughput advantage exists for some confidence interval. In
our implementation, we set Pi = p · Rl

Rh
(proportional to

the ratio between the lower and the higher rate values). The
intuition behind this is that, the larger the rate values differ,
the harder the rate switch is.

2) Short-term statistics for system responsiveness: Con-
secutive successes/failures are indications of an improv-
ing/deteriorating channel. However, a channel usually behav-
iors diversely and does not follow a fixed success/failure
pattern. Hence, static thresholds may degrade the system per-
formance. As they are used to trigger the rate switch decision,
their values must be carefully designed. When combined with
the “multirate retry” mechanism, we define three counters:
“consecutive successes” denotes the number of consecutive
packets succeeding at the first attempt; “consecutive ACKs”
indicates the number of consecutive packets that are sent
successfully at the first retry rate r0 = Ri (possibly with
several retries); and “consecutive failures” means the number
of consecutive packets that fail at all of the attempts with the
first retry rate r0. The rationale behind this is that as long
as the failed packet finally succeeds at r0, we do not count
it in consecutive failures, since previously failed attempts of
this packet may be caused by collision or fast fading, which
does not account for stable deteriorations in channel quality,
and is handled by the “multirate retry” strategy. Based on the
above analysis, we analyze failure threshold FT and success
threshold ST settings in the next sections:

3) FT settings: FT for “consecutive failures” should be
small to make the algorithm react quickly to deteriorating
channel conditions: a high value may cause too many failed
attempts before the long-term rate is reduced. When transmit-
ting smaller packets at lower rate, FT should be larger. Hence,
we use 2 different FT ’s, FT1 = 2 and FT2 = 4; at runtime,
one of them is chosen according to the ratio calculated by (7):

IFT =
SrefMACdata · Rmax

SMACdata · Rcur
. (7)

where SrefMACdata and SMACdata are the reference MAC
data size and current MAC data size; Rmax and Rcur are the
maximum data rate and the current data rate. The default FT
uses the smaller one FT1; whenever the calculated IFT is
larger than the threshold IthFT , FT is set to FT2.

4) ST settings: ST specifies the number of successful
packets in a row at the first attempt before it believes the link
quality has improved so that it should use a higher rate. A fixed
value of ST , like in ARF, is very sensitive to the changing
speed of link quality. Under stable channel conditions, the rate
adaptation algorithm can finally reach the best rate; after that,
it periodically attempts to transmit at a higher data rate, which
causes repeated failures. Therefore, an algorithm with dynamic
ST is preferred. When the channel condition changes slowly,
it is better to increase ST so as to minimize the undesired rate
increments. On the other hand, when the channel condition is
fluctuating, it is critical to find an optimal rate and stay there
for as long as possible, to avoid jitter.

In this paper, we propose a dynamic ST scheme similar
to that of TCP’s congestion control behavior. We first briefly
review the basic TCP rules. The sending behavior of a TCP

XIA and HAMDI: SMART SENDER: A PRACTICAL RATE ADAPTATION ALGORITHM FOR MULTIRATE IEEE 802.11 WLANS 1769

sender is determined by its state (either slow-start or conges-
tion avoidance) and the congestion window W . The sender
begins at the slow-start phase with initial congestion window
W = 2. Packets are sent back-to-back until a total of W
packets are in flight. The sender stops if a window of packets
are outstanding and waits until an ACK is received. During
slow start, for each arrival of TCP ACK, the sender increases
W by one, which means W effectively doubles every RTT
(round trip time). In congestion avoidance, W is increased by
1/W for each ACK and hence one every RTT. Whenever a
loss is detected, the sender halves the window and enters/stays
in the congestion avoidance state. The key idea behind TCP
congestion control is to probe the available bandwidth on
the network and to adjust the transmission rate accordingly.
To achieve this objective, TCP adopted the additive increase
multiplicative decrease (AIMD) mechanism. By additively
increasing W until detecting packet loss, which is regarded
as an implicit notification of congestion, TCP sender probes
available bandwidth and tries to use the bandwidth most
effectively. When it detects packet loss, TCP sender decreases
W multiplicatively, which reduces the transmission rate.

There is a correspondence between the nature of this
problem in WLANs and the nature of TCP congestion window
setting in Internet. The key idea of rate adaptation is to probe
the available bandwidth on the wireless link and to adjust
the transmission rate accordingly. To achieve this objective,
we adopt the multiplicative increase linear decrease (MILD)
mechanism for ST . The reason of using “MI” instead of
“AI” is that we now have a reduced “RTT” when former
ST is reached and the bit rate is increased on the wireless
link, rather than an invariant “RTT” in the TCP case. Similar
reason justifies “LD”. If previous ST has been reached and
the bit rate is increased, we conclude that the channel quality
is improving, and since the rate is already higher now, we
should increase ST to stay in the current high rate as long
as possible. By this way, we make sure that if the channel
quality is improving quickly, the new ST can be reached
soon again; otherwise, the undesired rate increment attempt is
postponed. Here we mark the transmissions of the first packet
at the new rate as “recovery”; if transmission failures at the
new rate immediately follow the rate increment, while resort
to the previous rate, we also increase ST to discourage further
rate increments. In other cases when the rate is decreased, we
reduce ST to encourage potential rate increments. Specifically,
we have an initial threshold value STmin. When conditions
are satisfied for increasing ST , we increase it multiplicatively
by a factor of α. When conditions are satisfied for decreasing
ST , we decrease it linearly by a factor of β. Throughout this
process, ST is bounded in the interval [STmin, STmax].

The parameters [STmin, STmax] and (α, β) need to be
carefully chosen. Among them, STmin and α are of the most
importance. We have the following facts:

• TCP uses small values of initial window size (2), additive
increase parameter (1), and multiplicative parameter (2).

• The coherence time of the indoor radio channel, a mea-
sure of the average time duration over which the radio
channel is stationary, is on the order of tens to hundreds
of packet transmission time.

Therefore, we examined several small values in [6, 20] for

STmin and [1.5, 3] for α respectively. The results show that
the combination of STmin = 8 and α = 2 performs slightly
better than others under most of the scenarios, while larger
values perform worse. STmax and β are set to simple values
such as 50 and 6. We note that ST should also account for the
packet size and data rate. Possible solutions include adopting
several ST ’s for different packet size intervals, or updating
the counters according the actual packet size and transmission
rate. We will discuss these issues in our future work.

B. RSSIA Regulator

In current design, wireless interface reports to the upper
layer about the signal strength of a received frame, denoted
by RSSI. Among them, RSSI of ACK is utilized to reflect
the channel quality at the receiver, which can avoid com-
plicated signal strength measurement as in [14]. For safety
use of RSSIA, a RSSIA regulator is developed to calculate
the average RSSI of recently received ACKs and predict
the dynamics of the channel condition based on the most
recent RSSIA values. Firstly, the RSSIA regulator acts as
a safeguard which limits the range of new rates to choose
from. When ACKs are continuously received, the average
RSSIA is calculated by EWMA, upon which feasible rates
are predicated. The rate selected by the statistic adaptor must
be within the safety region of the ones bounded by RSSIA. For
example, suppose the statistic adaptor decides to increase to
a new rate larger than all of the feasible rates, the increment
action is postponed. Secondly, the RSSIA regulator is also
used for fast recovery to a new rate. Once max(STmin, ST/2)
is reached, if the regulator observes improving channel quality
by increasing average RSSIAs, the sender may trigger the
rate-up action immediately, without waiting to reach ST .
Note that max(STmin, ST/2) is still required to ensure that
such improvement is a long-term effect instead of a transient
fluctuation. Finally, RSSIA readings can be viewed as an
indicator for contention level on the channel. We should not
reduce the rate too aggressively when average RSSIA is stable.
This point is not included in our current implementation but
is left to future work.

V. PRACTICAL IMPLEMENTATION OF Smart Sender IN

MADWIFI

A. Statistic Counters

A “smart sender” takes the full responsibility of maintaining
for a certain destination several counters, such as success-
ful/failed transmissions, and retry counters for each data rate.
They are evolved in the calculation for long-term statistics.
In addition, short-term throughput statistics for currently used
rate, such as “consecutive successes/ACKs/failures” are main-
tained: if the first attempt succeeds, the success counter is in-
creased by one; if some attempt at the first retry rate succeeds,
the acked counter is increased by one; otherwise, the failure
counter is increased by one and the success/acked counters are
reset to zero. Generally speaking, if the success/failure counter
reaches ST/FT and (1) is satisfied, the current rate for the
corresponding destination can be increased/decreased. As long
as the current rate is changed, the “success/acked/failure”
counters are reset to zero. As presented in Section IV-B,

1770 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008

other control logics are added into this basic structure, for
the purpose of safety and fast responsiveness.

1) When to probe up: Up-scale probing is triggered when
one of the following conditions is satisfied:

• The consecutive success counter reaches ST , and the
feasible rate looked up according to the RSSI threshold
table is larger than the current rate;

• The consecutive success counter reaches ST , and the
expected throughput satisfies (1);

• The consecutive success counter reaches ST/2 and the
RSSIs of continuously received ACKs are judged to be
improving quickly.

2) When to probe down: Accordingly, down-scale probing
is triggered when one of the following conditions is satisfied:

• The consecutive failure counter reaches FT , and the
feasible rate looked up according to the RSSI threshold
table is smaller than the current rate;

• The consecutive failure counter reaches FT , and the
expected throughput satisfies (1);

• The consecutive failure counter reaches FT and the
RSSIs of continuously received ACKs are judged to be
deteriorating quickly.

B. Multirate Retry Mechanism

To resolve transient channel variations, the Smart Sender
algorithm keeps the multirate retry mechanism with four retry
series (like that in ONOE), but modifies the values of ci’s
to make them suitable for our rate adaptation goals. Among
the four rate/count pairs, the allowed retry number for the
first retry series c0, is most relevant to system responsiveness.
A high value makes the second and later attempts use the
same rate as the first, which may in turn cause additional
retransmissions in the case where the channel condition is
really degrading. Therefore, we set c0 to 2, which means that
the first and second attempts use the long-term rate r0; after
that, the possible following retries use lower rates. The other
reason is that, with two attempts at the first retry rate, we do
not rush to a reduced rate once the first attempt fails, because
it is very probably that such a failure is caused by a collision.
Similarly, to ensure fast responsiveness to short-term channel
variations, c1, c2 and c3 are all set to a smaller value of 1,
since the collision probabilities for these later attempts are
much smaller.

C. State Transitions

The visible long-term transmission rate for a node, txRate
(the index to the current sorted rate set), is adjusted according
to the sender’s state. The main idea for state transitions is
illustrated in Fig. 3. Specifically, a sender has two states, the
“Tx” state and the “Probe” state. The statistics for these states
are updated/reset periodically according to a timer, with a
default timeout interval of 1000 ms. At the very beginning
of a new round, the sender is at its “Tx” state and transmits
packets at r0 = txRate. Meanwhile, the sender monitors the
transmission results of the current rate and if it observes a
promising rate by may probe(), which can possibly improve
the throughput, the sender sets up a new rate probeRate and

stop_peobe()

new roundmay_probe()

Tx

Probe
New

Round
rate_ctl()

rate_ctl()

fast_recovery()

Fig. 3. State transitions at the sender: in each round, the sender goes between
the “Tx” and “Probe” state; when the timer expires, the sender begins a new
round with an initial state of “Tx”.

enters into the “Probe” state. The following queued packets
are sent using r0 = probeRate, but txRate is not altered.
Similarly, the sender keeps on monitoring the probing results
at the probeRate and if it concludes that the probeRate offers
a better performance than the txRate, the sender quickly
recovers by setting r0 = txRate = probeRate and enters
into a new “Tx” state; otherwise, the sender stops probing and
goes back to the “Tx” state. After settling r0, the remaining
rate series r1, r2, r3 are determined in the same way as in
ONOE. Whenever a state transition occurs, the associated
statistics are updated. This process continues until the timer
expires, then the statistic counters are reset and a new round
is started. The three procedures, may probe(), stop probe()
and fast recovery() describe when the sender is allowed to
change its current state, which is critical to the throughput
performance.

Appendix I provides the pseudo code description of the
proposed algorithm. The flowchart of data paths and control
logics of the algorithm is shown in Fig. 4. In Smart Sender,
the sender collects statistics in the function tx complete().
After a frame transmission, the returned hardware status in the
descriptor is either “ok” (status = 0) or “error” (status �=
0), which is distinguished in tx complete(). Note that the
transmission “ok” status does not necessarily means that the
first attempt is successful, but that the frame may be success-
fully transmitted after several retransmissions. Accordingly,
the transmission “error” status means that all attempts of the
frame fail and it is discarded finally when the retry limit is
exceeded. The average RSSIA is used to look up feasible rates,
and predict channel dynamics, which are implemented in the
functions of lookup rssiThresholdTable(), fast up(), and
fast down(). Note that at the “Tx” state, the sender also uses
a threshold-based scheme like that in ARF, with FT set to 2
or 4. Moreover, to resolve the problems of ARF with a static
ST , it uses MILD to dynamically adapt ST , which is bounded
in the interval [STMin, STMax]. Whenever the threshold is
reached, along with the condition (1) satisfied, the sender
starts the “Probe” state by setting curRate = probeRate.
The rate selection is made in the function findrate(), which
decides the series 0 rate r0 and retry number c0 for a new

XIA and HAMDI: SMART SENDER: A PRACTICAL RATE ADAPTATION ALGORITHM FOR MULTIRATE IEEE 802.11 WLANS 1771

Rcur not changed

"Smart Sender"
control logics

Update statistics
Update signal
measurements

long-term

Update EGP at
each bit rate

short-term

Update success /
acked / failure

counters

stop_probe

may_probe

fast_up fast_down

fast_recovery

Rcur updated

Look up RSSIA
threshold table

YES

YES

YES

YES

On receiving / missing an ACK

YES

YES

YES YES Data path
Control path

Fig. 4. Data paths and control logics of the “Smart Sender” algorithm.

outgoing packet. With the multirate retry mechanism enabled,
r0 is set to the current rate curRate, which is either the long-
term transmission rate txRate, or the probing rate probeRate.
Then, the other multirate retry series are decided in the
function setupxtxdesc(), which completes the initialization
of the transmission descriptor for that packet. Finally, the
head-of-line packet is transmitted when the medium becomes
available.

VI. PERFORMANCE EVALUATION

After implementation of the Smart Sender algorithm on
real hardware, we conduct extensive experiments to study
its performance under various link conditions as introduced
in Section III. We compare the throughput/responsiveness
with existing algorithms in MADWiFi, shown in Table III.
Table II summarizes 802.11a MAC/PHY parameters and other
control parameters used in our experiments. We present main
performance results in this section.

A. UDP/TCP Throughput

Fig. 8(1)-(4) study the rate distribution probability of ONOE
and Smart Sender transmitting UDP traffic under different
link types. The total throughput in these scenarios is shown
in Fig. 5a. In all scenarios, Smart Sender manages to send
more packets at higher rates than ONOE, mainly due to
the “probe” and “fast recovery” mechanisms. In Fig. 8(1),
where the link is stable and with high quality, both ONOE
and Smart Sender can achieve similar optimal throughput.

TABLE II

MAC/PHY AND CONTROL PARAMETERS USED IN EXPERIMENTS

CWMin 15 STmax 50

CWMax 1023 STmin 8

SlotTime 9 μs FT1 2

SIFSTime 16 μs FT2 4

DIFSTime 28 μs α 2

Preamble Duration 16 μs β 6

PLCP Header 4 μs rateinterval 1000 ms

TCP Packet Size 1500 Bytes enough 20 packets

UDP Packet Size 1472 Bytes c0, c1, c2, c3 2, 1, 1, 1

However, ONOE spends much longer time, 10 seconds at
the initial rate 36 Mbps before scaling up to 48 Mbps and
spends another 10 seconds at 48 Mbps before finally reaching
the best 54 Mbps; on the other hand, Smart Sender can
quickly recover to 54 Mbps after several transmissions at the
beginning of the first second. Therefore, Smart Sender still
achieves slightly better performance than ONOE. In Fig. 8(2),
the channel quality is poor and the optimal long-term rate
is around 24 or 36 Mbps. Since ONOE requires 10 credits
to trigger a rate increase, it spends too much transmission
time at 24 Mbps and can only transmit at 36 Mbps for less
time. Smart Sender does not restrict the rate increase action
and can respond to the variations quickly enough (several
packet transmission time), so the packets sent at 36 Mbps
is much more than in ONOE. Similarly, in Fig. 8(3), the

1772 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008

TABLE III

PRONS/CONS OF THREE ALGORITHMS

Adjustment interval Algorithm CSI Comparison

Per-window ONOE statistic based stable long-term throughput

Per-packet SampleRate statistic based short-term responsiveness

Per-packet Smart Sender statistics and RSSIA stability and responsiveness

1 2 3 4
0

5

10

15

20

25

30

scenario

th
ro

ug
hp

ut
 (

M
bp

s)

ONOE
Smart Sender

[UDP throughput in scenario 1-4]

5 6 7 8
0

5

10

15

20

25

scenario

th
ro

ug
hp

ut
 (

M
bp

s)

ONOE
Smart Sender

[TCP throughput in Scenario 5-8]

Fig. 5. UDP/TCP throughput comparison of ONOE and Smart Sender in
all scenarios.

channel quality is good but N1 is moving around, causing
the received signal strength to vary over time at the AP.
Therefore, ONOE can hardly accumulate 10 credits to scale
up at 48 Mbps. However, when Smart Sender observes an
improving channel, it quickly probes at 54 Mbps, and when it
senses that the channel quality is deteriorating, it either stops
probing or retracts to 48 Mbps immediately. This is also true in
Fig. 8(4). Fig. 8(5)-(8) study the rate distribution of both rate
adaptation algorithms transmitting TCP traffic. The achieved
TCP throughput (Fig. 5b) is less than that of UDP, because of
additional protocol overhead such as TCP ACK. These results
demonstrate similar characteristics of Smart Sender as in UDP
scenarios.

Another feature of Smart Sender is, though it reacts to the
result of single packet transmission, it is stable by using long-

0

10

20

30

40

50

60

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134

Data Rate

RSSI

[SampleRate trace]

0

10

20

30

40

50

60

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137

Data Rate

RSSI

[Smart Sender trace]

Fig. 6. UDP N1 → N0: Data rate under varying channel conditions.

term statistics and RSSIAs to bound rate switch actions and
avoid jitter. In Smart Sender, the dominant factor to decide
a rate switch is throughput. If the current long-term rate can
offer better throughput, no adjustment for the long-term rate
is made though it may be suboptimal under some transient
channel conditions; indeed, transient variations are resolved
by the “multirate retry”. Even if Smart Sender selects a wrong
rate to probe, it can perceive the error through a few packet
transmissions and stop probing at that rate in the current round.

B. Responsiveness

Since ONOE is based on per-window adaptation, which
is inherently less responsive, in this section, we compare
the responsiveness of Smart Sender with SampleRate. Fig. 6
shows the trace profiles of both algorithms. For SampleRate,
the rate decreases when the channel quality drops for certain
interval, but with a phase lag. Also, the rate decreases are not
smooth but with lots of glitches. However, with Smart Sender,
the sender can predict and tune to the channel variations
quickly with little delay. Smart Sender is opportunistic, which
can quickly switch to a higher rate once a good channel occurs,
and down-scale while observing a string of failures.

XIA and HAMDI: SMART SENDER: A PRACTICAL RATE ADAPTATION ALGORITHM FOR MULTIRATE IEEE 802.11 WLANS 1773

 t (s)

N1

 t (s)

N2

 t (s)

N3

t1 t2 t3

T0

[Time-line for the transmissions of N1, N2 and N3]

0

5

10

15

20

25

N1(o) N1(s) N2(o) N2(s) N3(o) N3(s) Agg(o) Agg(s)

th
ro

u
g

h
p

u
t

(M
b

p
s)

t1

t2

t3

o: ONOE
s: Smart Sender
Agg: Aggregate

[Throughput of N1, N2 and N3 under contention]

Fig. 7. UDP throughput comparison of N1, N2 and N3 under contention.

C. Throughput under Contention

In the last experiment, we evaluate the UDP performance of
ONOE and Smart Sender under contention. In this scenario,
N1 is always moving; N2 and N3 are stationary. At T0, N1

starts the UDP traffic to N0, which lasts for 30 seconds (t1);
then N1 waits for 10 seconds; this pattern is repeated twice
more (transmitting in t2 and t3). N2 starts the UDP traffic to
N0 at the time T0 + 40, which also lasts for 30 seconds (t2);
then N2 waits for 10 seconds; this pattern is repeated once
more (in t3); The UDP traffic from N3 to N0 starts at the
time T0+80, lasts for 30 seconds (t3) and ends. Therefore, the
contention levels in the intervals of t1, t2 and t3 are increasing
along with the time. The time-line for the transmission/stop
intervals of the three nodes is shown in Fig. 7a.

The throughput performance is shown in Fig. 7b. As ex-
pected, when there is no contention during t1, Smart Sender
outperforms ONOE. Besides, in t2 and t3 intervals, we can
still observe higher throughput of Smart Sender than ONOE.
We conclude that one reason for this is due to the use of
RSSIA, which can bound the range of feasible rates and limit
the premature rate decrement actions. Also, note that in Smart
Sender, rate decrement is possible when consecutive failures
occur, which is, with a high probability, caused by imperfect
channel quality rather than collisions. Therefore, Smart Sender
is more suitable for occasional contention errors.

VII. CONCLUSION

Rate adaptation algorithms are extremely important for
WLANs with multirate capabilities. Previously proposed solu-
tions are based on either statistics of ACKs, retransmissions, or
signal strength measurements. In this paper, we have proposed
and evaluated a novel sender-based ARF-like algorithm, Smart
Sender, which combines statistic based methods with signal

measurement based methods to get the best of both worlds.
It does not require any changes to the IEEE 802.11 standard.
The novelty of our rate adaptation scheme lies in its great
adaptability to a variety of channel conditions robust enough
to be easily adopted for current wireless hardware. This rate
adaptation framework also provides hints for systems (such as
MIMO) used in future high-speed WLANs.

APPENDIX I
Smart Sender ALGORITHM

Smart Sender algorithm is described here for convenience.

1: Initially, probe = 0; {at the ”Tx” state}
2: tx complete() :
3: update try counter of packet transmissions at each rate

try[];
4: update average RSSIA with newly received ACK rssi;
5: feasibleRate = lookup rssiThresholdTable(rssi0);

{calculate feasibleRate from current RSSIA}
6: bestRate = find best rate by stats(try[]);

{calculate bestRate from transmission statistics}
7: if status == 0 then
8: err = 0;
9: if retryCount == 0 then

10: success + +; acked + +; failure = 0;
{consecutive successes/ACKs at curRate without
retries}

11: else if succeed at the first retry rate then
12: acked + +; success = 0; failure = 0;

{consecutive ACKs at curRate with retry}
13: else
14: success = 0; acked = 0; failure + +;

{consecutive failures other than curRate with re-
tries}

15: end if
16: else
17: success = 0; acked = 0; failure = 0; err++;

{consecutive errors at curRate exceeding retry limit}
18: end if
19: if !probe && prRate = may probe()! = −1 then
20: curRate = probeRate = prRate;
21: probe = 1;
22: else if probe && fast recovery() then
23: curRate = txRate = probeRate;
24: probe = 0;
25: else if probe && stop probe() then
26: curRate = txRate;
27: probe = 0;
28: end if

1: findrate() :
{find series0 rate before a frame transmission}

2: if mrretry then
3: rix = curRate; try0 = 2;
4: else
5: rix = fixedRate; try0 = TXMAXTRY ;
6: end if

1: setupxtxdesc() :
{set up mrretry descriptor before a frame transmission}

1774 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008

6 9 121824364854

1
2

0
0.5

1

x

(1) Scenario 1: UDP, LT 1

y

z

6 9 121824364854

1
2

0
0.5

1

x

(2) Scenario 2: UDP, LT 2

y

z

6 9 121824364854

1
2

0
0.5

1

x

(3) Scenario 3: UDP, LT 3

y

z

6 9 121824364854

1
2

0
0.5

1

x

(4) Scenario 4: UDP, LT 4

y

z

6 9 121824364854

1
2

0
0.5

1

x

(5) Scenario 5: TCP, LT 1

y

z

6 9 121824364854

1
2

0
0.5

1

x

(6) Scenario 6: TCP, LT 2

y

z

6 9 121824364854

1
2

0
0.5

1

x

(7) Scenario 7: TCP, LT 3

y

z

6 9 121824364854

1
2

0
0.5

1

x

(8) Scenario 8: TCP, LT 4

y

z

x: 802.11a data rates (Mbps)
y: 1 − ONOE; 2 − Smart Sender
z: Rate distribution probability

Fig. 8. Rate distribution probability for UDP/TCP traffic on different links.

2: rate0 = curRate;
3: rate1 = −− rate0 > 0?rate0 : 0;
4: rate2 = −− rate0 > 0?rate0 : 0;
5: rate3 = 0;
6: hal setupxtxdesc(..., rate1, 1, rate2, 1, rate3, 1);

1: rate ctl() :
2: update/reset statistics for the new round;

1: may probe() :
2: prRate = −1;
3: if !maxRate() && success ≥ max(STmin, ST/2) then
4: if (feasibleRate > txRate || egp[txRate + 1] · Pi >

egp[txRate]) && success ≥ ST then
5: prRate = txRate + 1;
6: else if fast up(rssi) then
7: prRate = txRate + 1;
8: end if
9: if prRate > txRate then

10: recovery = 1; {mark the first probe}
11: ST∗ = α; ST = min(ST, STmax);
12: else
13: recovery = 0;
14: end if
15: end if
16: if acked == 0 then
17: if !minRate() & &failure ≥ FT then
18: if feasibleRate < txRate || fast down(rssi) ||

egp[txRate − 1] · Pi > egp[txRate] then
19: prRate = txRate − 1;
20: end if
21: else if err > 0 then
22: prRate = bestRate;
23: end if

24: if recovery then
25: ST∗ = α; ST = min(ST, STmax);
26: else if txRate > prRate then
27: ST− = β; ST = max(ST, STmin);
28: end if
29: recovery = 0;
30: end if
31: if prRate! = −1 && canProbe[prRate] == −1 then
32: prRate = −1;
33: end if
34: return prRate;

1: stop probe() :
2: if (enough() && egp[probeRate] < egp[txRate]) ||

(failure > FT) || (err > 0) then
3: canProbe[probeRate] = −1;
4: return 1;
5: end if
6: return 0;

1: fast recovery() :
2: if (enough() && egp[probeRate] · Pi > egp[txRate]) ||

(success ≥ ST) then
3: canProbe[probeRate] = 1;
4: return 1;
5: end if
6: return 0;

REFERENCES

[1] IEEE Std 802.11-1999, Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, Std., Aug. 1999.

[2] IEEE Std 802.11a-1999, Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications: High-speed Physical
Layer in the 5 GHz Band, Std., Sep. 1999.

XIA and HAMDI: SMART SENDER: A PRACTICAL RATE ADAPTATION ALGORITHM FOR MULTIRATE IEEE 802.11 WLANS 1775

[3] IEEE Std 802.11b-1999, Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications: High-speed Physical
Layer Extension in the 2.4 GHz Band, Std., Sep. 1999.

[4] IEEE Std 802.11g-2003, Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications: Further Higher Data
Rate Extension in the 2.4 GHz Band, Std., Jun. 2003.

[5] A. Kamerman and L. Monteban, “WaveLAN-II: A High-Performance
Wireless LAN for the Unlicensed Band,” Bell Labs Technical Journal,
pp. 118–133, Summer 1997.

[6] P. Chevillat, J. Jelitto, A. N. Barreto, and H. L. Truong, “A Dynamic
Link Adaptation Algorithm for IEEE 802.11a Wireless LANs,” in Proc.
ICC’03, May 2003, pp. 1141–1145.

[7] “MADWIFI.” [Online]. Available: http://madwifi.org/
[8] M. Lacage, M. Manshaei, and T. Turletti, “IEEE 802.11 Rate Adapta-

tion: A Practical Approach,” in Proc. MSWiM’04, Venice, Oct. 2004,
pp. 126–134.

[9] J. C. Bicket, “Bit-rate Selection in Wireless Networks,” Master’s thesis,
Feb. 2005.

[10] G. Holland, N. Vaidya, and P. Bahl, “A Rate-Adaptive MAC Protocol for
Multi-Hop Wireless Networks,” in Proc. ACM MOBICOM’01, Rome,
Italy, Jul. 2001, pp. 236–251.

[11] D. Qiao, S. Choi, and K. G. Shin, “Goodput Analysis and Link
Adaptation for IEEE 802.11a Wireless LANs,” IEEE Trans. Mobile
Computing, vol. 1, no. 4, pp. 278–292, October-December 2002.

[12] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, “Oar: an
opportunistic auto-rate media access protocol for ad hoc networks,”
Wireless Networks, vol. 11, no. 1-2, pp. 39–53, Jan. 2005.

[13] J. del Prado Pavon and S. Choi, “Link Adaptation Strategy for IEEE
802.11 WLAN via Received Signal Strength Measurement,” in Proc.
ICC’03, vol. 2, Anchorage, Alaska, May 2003, pp. 1108–1113.

[14] I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Sips, “Hybrid Rate
Control for IEEE 802.11,” in Proc. MobiWac’04, Philadelphia, PA, Oct.
2004, pp. 10–18.

[15] M. Manshaei, T. Turletti, and M. M. Krunz, “Media-Oriented Trans-
mission Mode Selection in 802.11 Wireless LANs,” in Proc. WCNC’04,
Atlanta, Georgia, Mar. 2004, pp. 1525–3511.

[16] J. Kim, S. Kim, S. Choi, and D. Qiao, “CARA: Collision-Aware
Rate Adaptation for IEEE 802.11 WLANs,” in Proc. INFOCOM’06,
Barcelona, Spain, Apr. 2006, pp. 1–11.

[17] S. Pal, S. R. Kundu, K. Basu, and S. K. Das, “IEEE 802.11 Rate
Control Algorithms: Experimentation and Performance Evaluation in
Infrastructure Mode,” in Proc. PAM’06, Adelaide, Australia, Mar. 2006.

[18] Y. Yang, M. Marina, and R. Bagrodia, “Experimental Evaluation of Ap-
plication Performance with 802.11 PHY Rate Adaptation Mechanisms
in Diverse Environments,” in Proc. WCNC’06, Las Vegas, USA, Apr.
2006, pp. 2273–2278.

[19] Z. Ji, Y. Yang, J. Zhou, M. Takai, and R. Bagrodia, “Exploiting Medium
Access Diversity in Rate Adaptive Wireless LANs,” in Proc. ACM
MOBICOM’01, Philadelphia, PA, Sep. 2004, pp. 345–359.

[20] “ATHEROS Communications.” [Online]. Available: http://www.atheros.
com/pt/index.html/

[21] Netperf, “The Networking Benchmark.” [Online]. Available: http:
//www.netperf.org/

[22] M. Souryal, L. Klein-Berndt, L. Miller, and N. Moayeri, “Link Assess-
ment in an Indoor 802.11 Network.”

Qiuyan Xia (S’05) received her B.S. degree in Com-
puter Science from the Nanjing University, Nanjing,
China, in 2003. She is currently working towards the
Ph.D degree in Computer Science and Engineering,
at the Hong Kong University of Science and Tech-
nology, Hong Kong, China. Her research interests
include cross layer design and optimization, adaptive
algorithms, link adaptation, resource management
for the IEEE 802.11 WLANs, and quality of service
provisioning.

Mounir Hamdi (S’90-M’91-SM’06) received the
B.S. degree in Electrical Engineering from the Uni-
versity of Louisiana in 1985, and the MS and the
PhD degrees in Electrical Engineering from the Uni-
versity of Pittsburgh in 1987 and 1991, respectively.

He has been a faculty member in the Department
of Computer Science at the Hong Kong University
of Science and Technology since 1991, where he is
now Full Professor of Computer Science, Director
of the Computer Engineering Program, and Director
of the Master of Science in Information Technology.

He is a member of the University Senate and University Council. In 1999
to 2000 he held visiting professor positions at Stanford University, USA,
and the Swiss Federal Institute of Technology, Lausanne, Switzerland. His
general area of research is in high-speed wired/wireless networking in which
he has published more than 220 research publications, received numerous
research grants, and graduated more 20 PhD/Master students. In addition,
he has frequently consulted for companies in the USA, Europe and Asia on
high-performance Internet routers and switches as well as high-speed wireless
LANs.

Dr. Hamdi is/was on the Editorial Board of IEEE Transactions on Com-
munications, IEEE Communication Magazine, Computer Networks, Wireless
Communications and Mobile Computing, and Parallel Computing. He was
a guest editor of IEEE Communications Magazine, guest editor-in-chief of
two special issues of IEEE Journal on Selected Areas of Communications,
and a guest editor of Optical Networks Magazine, and has chaired more
than 7 international conferences and workshops including The IEEE Inter-
national High Performance Switching and Routing Conference, the IEEE
GLOBECOM/ICC Optical networking workshop, the IEEE ICC High-speed
Access Workshop, and the IEEE IPPS HiNets Workshop. He is/was the Chair
of IEEE Communications Society Technical Committee on Transmissions,
Access and Optical Systems, and Vice-Chair of the Optical Networking
Technical Committee, as well as member of the ComSoc technical activities
council. He is/was on the technical program committees of more than 120
international conferences and workshops. He received the best paper award
at the International Conference on Information and Networking in 1998 out
of 152 papers. In addition to his commitment to research and professional
service, he is also a dedicated teacher. He received the best 10 lecturers
award and the distinguished engineering teaching appreciation award from
the Hong Kong University of Science and Technology, and various grants
targeted towards the improvement of teaching methodologies, delivery and
technology. He is a member of IEEE and ACM.

